The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks
نویسندگان
چکیده
RecN is a cohesin-like protein involved in DNA double-strand break repair in bacteria. The RecA recombinase functions to mediate repair via homologous DNA strand invasion to form D-loops. Here we provide evidence that the RecN protein stimulates the DNA strand invasion step of RecA-mediated recombinational DNA repair. The intermolecular DNA tethering activity of RecN protein described previously cannot fully explain this novel activity since stimulation of RecA function is species-specific and requires RecN ATP hydrolysis. Further, DNA-bound RecA protein increases the rate of ATP hydrolysis catalysed by RecN during the DNA pairing reaction. DNA-dependent RecN ATPase kinetics are affected by RecA protein in a manner suggesting a specific order of protein-DNA assembly, with RecN acting after RecA binds DNA. We present a model for RecN function that includes presynaptic stimulation of the bacterial repair pathway perhaps by contributing to the RecA homology search before ternary complex formation.
منابع مشابه
Dynamic structures of Bacillus subtilis RecN–DNA complexes
Genetic and cytological evidences suggest that Bacillus subtilis RecN acts prior to and after end-processing of DNA double-strand ends via homologous recombination, appears to participate in the assembly of a DNA repair centre and interacts with incoming single-stranded (ss) DNA during natural transformation. We have determined the architecture of RecN-ssDNA complexes by atomic force microscopy...
متن کاملPolynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins
Bacillus subtilis pnpA gene product, polynucleotide phosphorylase (PNPase), is involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ). RecN is among the first responders to localize at the DNA DSBs, with PNPase facilitating the formation of a discrete RecN focus per nucleoid. PNPase, which co-purifies with RecA and RecN, was able to d...
متن کاملCritical role of RecN in recombinational DNA repair and survival of Helicobacter pylori.
Homologous recombination is one of the key mechanisms responsible for the repair of DNA double-strand breaks. Recombinational repair normally requires a battery of proteins, each with specific DNA recognition, strand transfer, resolution, or other functions. Helicobacter pylori lacks many of the proteins normally involved in the early stage (presynapsis) of recombinational repair, but it has a ...
متن کاملBacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair
Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg(2+) bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA...
متن کاملDynamic formation of RecA filaments at DNA double strand break repair centers in live cells
We show that RecN protein is recruited to a defined DNA double strand break (DSB) in Bacillus subtilis cells at an early time point during repair. Because RecO and RecF are successively recruited to DSBs, it is now clear that dynamic DSB repair centers (RCs) exist in prokaryotes. RecA protein was also recruited to RCs and formed highly dynamic filamentous structures, which we term threads, acro...
متن کامل